
CPE 470 - Synthesis

Synthesis
● Transformation from higher level design to lower level

functional representation
○ HLS : higher level language like C++, gets translated

to RTL or logic level

Glossary
HLS: High Level Synthesis

● RTL Synthesis:
1. Start with RTL
2. Synthesize to generic

logic (NAND, AND)
3. Map generic logic to

implementation-
specific physical gates

Yosys

● Primary Open-Source Synthesis Tool
○ Developed by Claire Xenia Wolf

● Implementation Independent
○ Can be used for FPGAs, mapping to LUTs
○ Can be used for ASICs, mapping to Standard Cells

● Primarily optimizes for area
○ Follows the philosophy that smaller is usually faster
○ Generally does not do Timing-Driven Synthesis

Glossary
Timing-Driven Synthesis: iteratively runs timing
analysis during synthesis to optimize for speed

How Yosys Synthesis Works

● Behavioral / RTL Verilog
goes in

● Verilog Netlist comes
out

Glossary
Netlist: description of an electric circuit,
including devices (gates) and the nets
(wires) that connect them

Verilog to AST
First, we have to process our verilog code into a meaningful graph

1. Preprocessor evaluates parameters, macros, etc.
● Macros like `define, `ifdef, or `include

2. Lexer processes character by character into tokens
3. Parser builds tokens into AST

● Abstract Syntax Tree is language agnostic assign foo = bar + 42;

Glossary
AST: Abstract Syntax Tree

AST to RTLIL
Glossary

IR: Intermediate Representation,
code internal to a compiler
RTLIL: Register Transfer Layer
Intermediate Language● Graphical Representation of code gets translated to

an Intermediate Representation (IR), specifically RTLIL
○ Logic Gates -> Cells
○ Connections between gates -> Wires
○ 2D Arrays -> Memory
○ Control Logic -> Process

■ Clocks and Sensitivity -> Sync Rule
■ Switch Statements -> Case Rule, Switch Rule

RTLIL to Verilog Netlist

Set of minimal logic functions include:

● $_AND_
● $_BUF_
● $_MUX_
● $_NAND_
● $_NOR_
● $_NOT_
● $_OR_
● $_XNOR_
● $_XOR_

● RTLIL contains all necessary functionality of circuit
○ Use it to rebuild verilog netlist of only wires, flip

flops, and minimal logic functions

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_AND_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_BUF_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_MUX_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_NAND_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_NOR_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_NOT_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_OR_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_XNOR_
https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_XOR_

Technology Mapping

● Uses ABC, a tool developed by Berkeley, to match generic

logic gates to specific physical standard cells

○ Standard Cell functionalities defined in .lib Liberty file

● Matching of individual cells

○ $_NAND_ ->

● Matching of subcircuits

○

● ABC is able to do some timing optimization, in progress

towards timing-driven synthesis

https://yosyshq.readthedocs.io/projects/yosys/en/latest/cell/gate_comb_simple.html#comb_simple.$_AND_

Supported Features

● Yosys does not have complete system verilog support!
○ Technically supports Verilog 2005

● Still includes all the features we care about
○ always_comb, always_ff and always_latch
○ logic and bit
○ typedef and enum
○ Packed Structs
○ Multidimensional Arrays

■ Not on inputs/outputs though
○ interfaces and modports

■ Use with caution, recent additions

Scope Continued

Verilog 2005 +

Extra SV Features

Synthesizable or Not?

● Bit Flipper
○ Flips r every clock cycle
○ Active low asynchronous reset

Not!

● Register r has multiple drivers!
○ Verilator will actually warn about this

● Fix by combining into one sensitivity list

Synthesizable or Not? 2

● Integer Adder

Yes, but…
● Variable types of fixed size will be

translated to logics of equal size
○ int -> 32 bit logic
○ byte -> 8 bit logic
○ bit -> 1 bit logic

● Don’t use them in RTL!!!
○ Always use logic/reg/wire
○ variable types are simulated as

2 state instead of 4 state
● Only use them in testbenches

Synthesizable or Not? 3

Yes, but…
● Yosys will let you create combinational loops if you want!

○ Generally it will warn you about them
○ There are times when you want to make an oscillator,

such as for random number generation

● Verilator will get more upset than Yosys about this

Synthesizable or Not? 4

● In1 drives the output high
● In2 drives the output low

Not!

● A latch is inferred at the output
○ This is because out is not defined in

the case where in1 and in2 are 0
● Yosys does not allow inferred latches
● Always declare default output values at the

beginning of an always_comb block

References
• https://yosyshq.readthedocs.io/en/latest/

https://yosyshq.readthedocs.io/en/latest/

